

POWER QUALITY MEASUREMENT PROCEDURE

Version 4
October 2009

List of Contents

1.	Foreword	3
2.	Introduction	3
3.	The reference measurement procedure	
4.	Additional requirements	
4.1	Rated Data (IEC section 7.2)	3
4.2	Flicker in continuous operation (IEC section 7.3.3)	
4.3	Analysis of voltages, currents, active and reactive power	
4.4	Response to temporary voltage drops (IEC chapter 6.5)	
4.5	Uncertainty Analysis	
5.	Bibliography	
	A: Data Sheet	
	B: Uncertainty in Power Quality Measurements	

1. Foreword

MEASNET is a network of measurement institutes which have been established to harmonise wind energy related measurement procedures. The institutes of MEASNET are all actively performing wind energy related measurements. Each institute has to document the skills and quality of measurements, to apply agreed "MEASNET measurement procedures" and to participate as required in mutual evaluation exercises.

2. Introduction

The MEASNET Power Quality Measurement Procedure is the measurement procedure agreed upon by the MEASNET members to be mutually used and accepted. The procedure is considered to be the most internationally accepted procedure on which a common interpretation and understanding has been exercised in accordance with the MEASNET Quality Evaluation Program, based on the objective of continuously improving quality in measurements.

3. The reference measurement procedure

The measurement procedure is based on the IEC 61400-21 [1].

4. Additional requirements

Further additional requirements to the reference procedure are given in order to strengthen the quality and inter-comparability of the measurements.

With reference to the chapter numbers of IEC 61400-21, the additional Measnet requirements are:

4.1 Rated Data (IEC section 7.2)

The rated active power P_n , the rated reactive power Q_n , the rated apparent power S_n , the rated voltage U_n and the rated current I_n are based on manufacturer's information, but not necessarily on measurements. Thus the measured current and reactive and apparent power at rated active power can possibly deviate from the rated values.

4.2 Flicker in continuous operation (IEC section 7.3.3)

For the flicker measurement wind speed bins of 1 m/s are used starting from integer values up to <15 m/s. In case cut-in wind speed is not an integer value then it is rounded down to the closest integer (example: in case the cut-in wind speed is 3.5 m/s, then the first wind speed bin is from 3 m/s up to < 4 m/s).

4.3 Analysis of voltages, currents, active and reactive power

For the calculation of active and reactive power, active and reactive current and voltage it is required to follow the method of the positive sequence calculation, given in Annex C of the IEC 61400-21 [1].

4.4 Response to temporary voltage drops (IEC chapter 6.5)

The reference guideline (IEC 61400-21) gives voltage dip tests in Table 1 of section 6.5. Grid operators often require different voltage dip tests. It is in accordance with this MEAS-NET guideline to perform voltage dip tests with different times and voltage depths than given in the IEC guideline.

4.5 Uncertainty Analysis

It is required that an **uncertainty analysis** is carried out in accordance with the ISO guide to the expression of uncertainty [2] . The procedure for estimating the uncertainty of the power quality measurements is described in Appendix B.

5. Bibliography

- [1] IEC 61400-21 Ed. 2 (2008-8): Wind Turbines, Part 21: Measurement and assessment of power quality characteristics of grid connected wind turbines.
- [2] ISO/IEC Guide 98-3:2008(E) Uncertainty of measurement Part 3: Guide to the expression of uncertainty in measurement (GUM:1995)
- [3] IEC 61400-12-1 Power performance measurements of electricity producing wind turbines, First edition

Annex A: Data Sheet

DATA SHEET OF POWER QUALITY MEASUREMENT

According to Measnet Power Quality Procedure, Version 4


Report:				Sheet:			page 1 of 22
Wind turbine type designa	ation:				Serial numbe	r:	
Wind turbine manufacture					<u> </u>		
Description of the tested v		bine, including	Documer	nt name and	d date		
settings of control parame Description of the test site		id connection:					
Description of the test equ							
Description of test condition	ons:						
·							
Name and address of test	organis	sation:					
Author:			Check	ed:			
Date of issue:			Approv	/ed:			
General data:							
Number of blades:				ator type	and		
Rotor diameter [m]:			rating:	[kW]			
Hub height [m]:					erter type		
Blade control (pitch/stall):			and ra	ting [kV <i>A</i>	A]		
Cut-in wind speed [m/s]			Special	features	:		
Speed control (fixed/2speed/variable):							
Speed range [rpm]							
Wind turbine type (doubly fed / full converted direct coupled / others)	r /						
5 ct cc ap. 3 d / 3 d / 3 d / 3 d			1				
Rated data:			D		, ,		
Rated power, P _n :[kW]			Rated [kVA]	apparen	t power, S _n	į :	
Rated wind speed, v _n :[m/s	§]		Rated	current,	I _n : [A]		
Rated voltage, U _n : [V]			Rated	frequenc	cv. f _s [Hz]		

According to Measnet Power Quality Procedure, Version 4

Wind turbine typ	e:			Sheet:			page 2 of 22			
Maximum measured power:										
Max. measured 60		Max. measured				asured 0.2 se				
P ₆₀₀	p ₆₀₀ =P ₆₀₀ /P _n	P ₆₀	p ₆₀ =P	₆₀ /P _n	P _{0.2}	P _{0.2}				
Reactive power:										
Output power bi	Output power [kW]	r bin-n	nean-value	Reactive [kvar]	e power bin-	mean-value				
from	to									
-0.05	< 0.05									
0.05	<0.15									
0.15	<0.25									
0.25	< 0.35									
0.35	<0.45									
0.45	<0.55									
0.55	< 0.65									
0.65	<0.75									
0.75	<0.85									
0.85	<0.95									
0.95	<1.05									
Operational mod point control	de (reactive se Q=0 / others)	t								
Flicker:										
Network impeda	nce phase angle	e, ψ _k :		30°	50°	70°	85°			

Network impedance phase angle, ψ_k :	30°	50°	70°	85°
Annual average wind speed, v _a (m/s):	Flicker coeffic	cient, $c(\psi_k, v_\epsilon)$	<u>,</u>):	
6.0 m/s				
7.5 m/s				
8.5 m/s				
10 m/s				
Operational mode (reactive set point control Q=0 / others)				

Wind turbine type:		Sheet:			page 3 of 22
Switching operations	S:				
	mode for switchings int control Q=0 / others)				
Case of switching op	peration:	Start-up at co	ut in wind sp	peed	
Maximum number of	f switching operations, N_{10m} :				
Maximum number of	f switching operations, N_{120m} :				
Network impedance	phase angle, ψ_k :	30°	50°	70°	85°
Flicker step factor, k	$f(\psi_k)$:				
Voltage change fact	or, $k_U(\psi_k)$:				
Case of switching or	peration:	Start-up at ra	ated wind sp	peed or hig	her
Maximum number of	f switching operations, N _{10m} :				
Maximum number of	f switching operations, N_{120m} :				
Network impedance	phase angle, ψ_k :	30°	50°	70°	85°
Flicker step factor, k	$f_f(\psi_k)$:				
Voltage change fact	or, $k_U(\psi_k)$:				
Case of switching or	peration:	Worst case s	switching be	tween ger	nerators:
Maximum number of	f switching operations, N _{10m} :				
Maximum number of	f switching operations, N _{120m} :				
Network impedance	phase angle, ψ_k :	30°	50°	70°	85°
Flicker step factor, k	$f(\psi_k)$:				
Voltage change fact	or, k _U (ψ _k):				

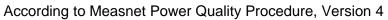
According to Measnet Power Quality Procedure, Version 4

Wind turbine type:	Sheet:	page 4 of 22

Operational mode during the test (reactive set point control Q=0 / others)

Harmonics currents

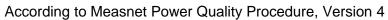
Harmonics											
P _{bin} (%)	0	10	20	30	40	50	60	70	80	90	100
Н	I _h (%)										
2											
3											
4											
5											
6											
7											
8											
9											
10											
11											
12											
13											
14											
15											
16											
17	-										-
18											
19											
20											
21											
22											
23											
24											
25											
26											
27											
28											
29											
30											
31											
32											
33											
34											
35											
36											
37											
38											
39											
40											
41											
42											
43											
	-		-								
44	-		1								
45	-										
46			1								
47			1								
48	1		1								
49											
50											
THC (%)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0



Wind turbine type:	Sheet:		page 5 of 22
--------------------	--------	--	--------------

Interharmonic currents

P _{bin} (%) 0 10 20 30 40 50 60 70 80 90 1 f (Hz) I _h (%) I _h (%)
75/90 125/150 175/210 225/270 275/330 325/390 375/450 425/510 475/570 525/630 575/690 625/750 675/810 775/930 825/990 875/1050 925/1110
75/90 125/150 175/210 225/270 275/330 325/390 375/450 425/510 475/570 525/630 575/690 625/750 675/810 775/930 825/990 875/1050 925/1110
175/210 225/270 275/330 325/390 375/450 425/510 475/570 525/630 575/690 6625/750 675/810 775/930 825/990 875/1050 925/1110 925/1110
225/270 275/330 325/390 325/390 375/450 375/450 425/510 425/570 525/630 525/630 575/690 525/630 625/750 525/630 675/810 725/870 775/930 775/930 825/990 875/1050 925/1110 925/1110
225/270 275/330 325/390 325/390 375/450 375/450 425/510 425/570 525/630 525/630 575/690 525/630 625/750 525/630 675/810 725/870 775/930 775/930 825/990 875/1050 925/1110 925/1110
275/330
325/390 375/450 425/510 475/570 525/630 575/690 625/750 675/810 725/870 775/930 825/990 875/1050 925/1110
375/450 425/510 475/570 525/630 575/690 625/750 675/810 725/870 775/930 825/990 875/1050 925/1110
425/510 475/570 525/630 575/690 575/690 625/750 675/810 725/870 775/930 775/930 825/990 875/1050 925/1110 925/1110
475/570 525/630 575/690 575/690 625/750 675/810 675/810 725/870 775/930 775/930 825/990 875/1050 925/1110 925/1110
525/630 575/690 575/690 625/750 675/810 675/810 725/870 775/930 825/990 875/1050 925/1110 925/1110
575/690 625/750 675/810 675/810 725/870 775/930 825/990 875/1050 925/1110 925/1110
625/750 675/810 725/870 775/930 825/990 875/1050 925/1110
675/810 725/870 775/930 825/990 875/1050 925/1110
725/870 775/930 825/990 875/1050 925/1110
775/930 825/990 875/1050 925/1110
825/990 875/1050 925/1110
875/1050 925/1110
925/1110
975/1170
1025/1230
1075/1290
1125/1350
1175/1410
1225/1470
1275/1530
1325/1590
1375/1650
1425/1710
1475/1770
1525/1830
1575/1890
1625/1950
1675
1725
1775
1825
1875
1925
1975



Wind turbine type:	Sheet:	page 6 of 22

Higher frequency components

P _{bin} (%)	0	10	20	30	40	50	60	70	80	90	100
f (kHz)	I _h (%)										
2,1	In (70)	In (70)	τη (70)	in (70)	In (70)	In (70)	Ιη (70)	In (70)	In (70)	In (70)	In (70)
2,3											
2,5											
2,7											
2,9											
3,1											
3,3											
3.5											
3,5 3,7											
3,9											
4,1											
4,3											
4,5											
4,7											
4,9											
5,1											
5,3											
5,5											
5,7											
5,9											
6,1											
6,3											
6,5											
6,7											
6,9											
7,1											
7,3											
7,5											
7,7											
7,9											
8,1											
8,3											
8,5											
8,7											
8,9											

minute / others)

Wind turbine type:		Sheet:	page 7 of 22
Active power ram	p rate limitation:		
	the wind turbine during the set to 10 % of rated power		

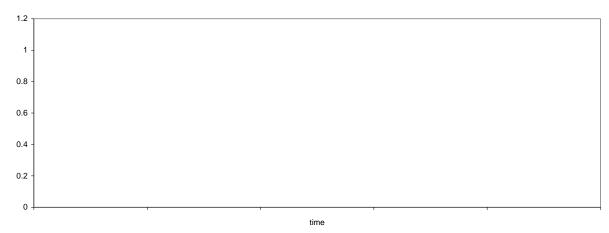
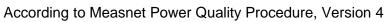



Figure: Time-series of available and measured active power output during ramp rate limitation

Figure: Time-series of measured wind speed during ramp rate limitation

Wind turbine type:	Sheet:	page 8 of 22

Active power set-point control:

Operational mode of the wind turbine during the test	
•	
(active power set-point control mode / others)	
(detire perior est perior estimate)	

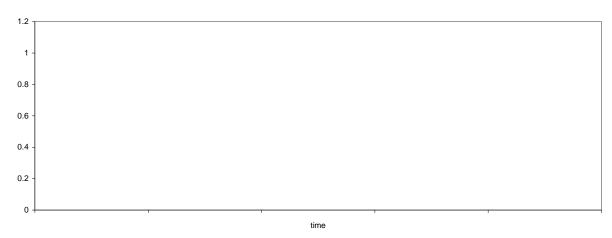


Figure: Time-series of active power set-point values, available power and measured active power output during active power set point control

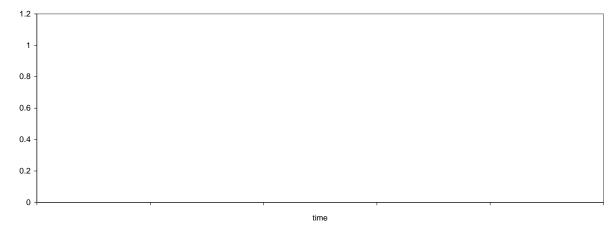


Figure: Time-series of measured wind speed during active power set point control

According to Measnet Power Quality Procedure, Version 4

Wind turbine	type:				Sheet:					page 9 o	f 22
Reactive po	ower ca	apabilit	y:								
Active power P _{bin} [%]	0	10	20	30	40	50	60	70	80	90	100
Max. induc- tive reactive power [kvar]											
Max. capaci- tive reactive power [kvar]											
Operational mode of the wind turbine during the test								•			

Reactive power set point step change:

(active power set-point control mode / others)

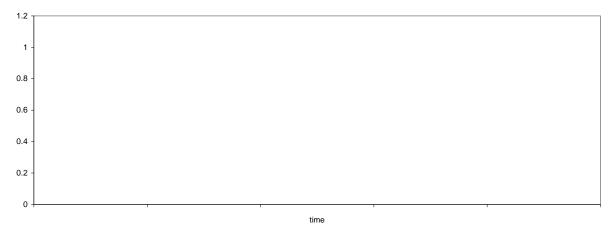


Figure: Time-series of reactive power set-point values and measured reactive power during reactive power set point step change

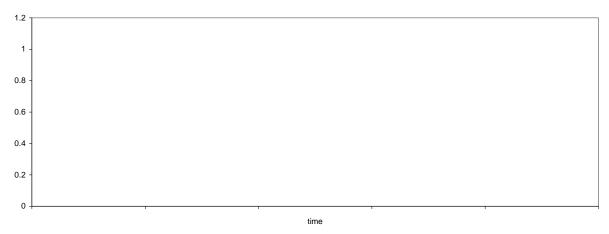


Figure: Time-series of active power during reactive power set point step change

According to Measnet Power Quality Procedure, Version 4

Wind turbine type:	Sheet:	page 10 of 22

Grid Protection:

	Protect	ion level	Disconnection time		
	Set point	Measured	Set point	Measured	
Overvoltage					
Undervoltage					
Overfrequency					
Underfrequency					

Reconnection time:

Duration of grid failure [s]	10	60	600
Actual measured duration of grid failure [s]			
Reconnection time [s]			

According to Measnet Power Quality Procedure, Version 4

				[
Wind turbine type:		Shee	t:			page	11 of 22
Response to voltage	ge drops:						
Operational mode of the	•	g the test					
Active power range				Between 0,1	P _n and (0.3 P _n	
Case	Magnitude of vo ately Phase to pha	before the dr			Duratio	n (s)	Shape
VD1 – symmetrical three phase voltage dip	0,90 ± 0,05	5	0,90 ±	0,05	0,5 ± 0),02	
1		•					
-							
	Г		ı		1		time
Figure: measured voltag	ge drop when the w	rind turbine un	der test is r	not connected	d.		
_							
			ı		ı		time
Figure: measured pos. s	sequence fundame	ntal active pov	ver				
	T		ı		1		time
Figure: measured pos. s	sequence fundame	ntal reactive p	ower				unie
			ı		1		
Figure: measured pos. s	sequence fundame	ntal active cur	rent				time
			ı				
Figure: measured pos. s	sequence fundame	ntal reactive c	urrent				time
	<u> </u>						
			1		1		time

Wind turbine type:		Sheet:		pag	e 12 of 2
Response to voltaç	ge drops:				
	wind turbine during the te	est			
Active power range			Abov	/e 0,9 P _n	
Case	Case Magnitude of voltage (fraction of voltage ately before the drop occurs) Phase to phase Phase to gro			Duration (s)	Shape
VD1 – symmetrical three phase voltage dip	0,90 ± 0,05	0,90 =		0,5 ± 0,02	-
		ı		T	
Figure: measured voltag	ge drop when the wind turb	oine under test is	not connecte	ed.	time
	<u>'</u>				
+	1	1		ı	time
Figure: measured pos. s	sequence fundamental act	ive power			
-					
	1	T		1	time
Figure: measured pos. s	sequence fundamental rea	ctive power			unie
				1	time
Figure: measured pos. s	sequence fundamental act	ive current			
-					
	1	1			time
Figure: measured pos. s	sequence fundamental rea	ctive current			unio
1	I	ı		ı	time

According to Measnet Power Quality Procedure, Version 4

Wind turbine type:		Sheet:				page	13 of 22
Response to voltage							
Operational mode of the	wind turbine during the te	est					
Active power range				Between 0,1	P _n and	0.3 P _n	
Case	Magnitude of voltage (Duratio	on (s)	Shape
	ately before Phase to phase			ground			
VD2 – symmetrical three phase voltage dip	0,50 ± 0,05		0,50 ±	0,05	0,5 ±	0,02	
					<u> </u>		
-							
	T		1		1		
Figure: measured voltag	je drop when the wind turb	sina undar t	toet is i	not connecto	٨		time
Tigure. measured voitag	e drop when the wind ture		1621 12 1	TOL COLLIECTE	u. 		
1			1		1		time
Figure: measured pos. s	sequence fundamental act	ive power					
1							
	Т		1		1		time
Figure: measured pos. s	sequence fundamental rea	ctive powe	r				
1		<u> </u>					
-							
	T		1		_		
F '		•					time
rigure: measured pos. s	sequence fundamental act	ive current					
+	Т		1		1		time
Figure: measured pos. s	equence fundamental rea	ctive curre	nt				
-							
	T		1		1		time

According to Measnet Power Quality Procedure, Version 4

Wind turbine type:		Sheet:				page	14 of 2
Response to voltage	ge drops:						
Operational mode of the	wind turbine during the te	est					
Active power range				Abov	e 0,9 P _n		
Case		fraction of voltage immedi- the drop occurs) Phase to ground			op occurs)		Shape
VD2 – symmetrical three phase voltage dip	0,50 ± 0,05	(0,50 ± 0	0,05	0,5 ±	0,02	-
		•					
	1		T		1		time
Figure: measured voltag	e drop when the wind turk	oine under te	est is r	not connecte	d.		
	1		ı		T		
Figure: measured pos. s	equence fundamental act	ive power					time
			ı		1		time
Figure: measured pos. s	equence fundamental rea	ctive power					
_							
	1		ı		1		time
Figure: measured pos. s	equence fundamental act	ive current					
Figure: measured pos. s	equence fundamental rea	ctive currer	nt		•		time
+	ı		1		1		timo

According to Measnet Power Quality Procedure, Version 4

Wind turbine type:		Shee	et:			page	15 of 22
Response to voltage	ne drons:						
Operational mode of the		e test					
Active power range				Between 0,1	I P _n and	0.3 P _n	
Case	Magnitude of voltag ately befo Phase to phase		on of voltag op occurs) Phase to)	Duratio	on (s)	Shape
VD3 – symmetrical three phase voltage dip	0,20 ± 0,05		0,20 ±	0,05	0,2 ±	0,02	
	1		Т				time
Figure: measured voltag	ge drop when the wind t	turbine un	der test is i	not connecte	d.		
Figure: measured pos. s	sequence fundamental	active pov	wer		ı		time
	ı				1		time
Figure: measured pos. s	sequence fundamental	reactive p	oower				
_							
Figure: measured pos. s	sequence fundamental	active cu	rent		T		time
Tigure. Medadred pool e	sequence randamental						
	т		ı		T		
Figure: measured pos. s	sequence fundamental	reactive o	current				time
-							
1	1		Т		1		time

According to Measnet Power Quality Procedure, Version 4

Wind turbine type:		Sheet:		pag	ge 16 of 2
Response to voltage	ge drops:			•	
	wind turbine during the te	st			
Active power range			Abov	e 0,9 P _n	
Case	ately before the drop			Duration (s	Shape
VD3 – symmetrical three phase voltage dip	0,20 ± 0,05	Phase to		0,2 ± 0,02	
	ı	T		ı	time
Figure: measured voltag	ge drop when the wind turb	ine under test is	not connecte	d.	
-					
F	, , , , , , , , , , , , , , , , , , ,	1		T	time
Figure: measured pos. s	sequence fundamental acti	ve power			
-					
	T	ı		Т	time
Figure: measured pos. s	sequence fundamental read	ctive power			
	т	1		1	4:
Figure: measured pos. s	sequence fundamental acti	ve current			time
Figures magazined no. 6	and the demonstrative of	otivo overont		ı	time
rigure. measured pos. s	sequence fundamental read	Suve current			
-					
1	· · · · · · · · · · · · · · · · · · ·	Г		ı	time

According to Measnet Power Quality Procedure, Version 4

Wind turbine type:		Shee	t:			page	17 of 22
Pesnonse to volta	ge drone:						
Operational mode of the		he test					
Active power range				Between 0,1	I P _n and	0.3 P _n	
Case	ately before the drop occurs)					on (s)	Shape
VD4 – two-phase voltage dip	0.90 ± 0.05		0,95 ±	0,05	0,5 ±	0,02	
							time
Figure: measured voltag	ge drop when the wind	d turbine un	der test is r	not connecte	d.		
-							
Figures massured has a	acquence fundaments	al activo nov	1		1		time
Figure: measured pos. s	sequence fundamenta	ar active pov	wei				
-							
Figure: measured pos. s	sequence fundamenta	al reactive n	ower		ı		time
I igare. measured pos. (i redelive p	OWCI				
-							
Figure: measured pos.	sequence fundamenta	al active cur	rent				time
Igares measures poor							
Figure: measured pos.	sequence fundamenta	al reactive c	urrent				time
	1		ı		1		time

According to Measnet Power Quality Procedure, Version 4

Wind turbine type:		Sheet:				page	18 of 22
Response to volta	ge drops:						
Operational mode of the	e wind turbine during the te	est					
Active power range				Abov	e 0,9 P _n		
Case		agnitude of voltage (fraction of voltage immedi- ately before the drop occurs) Phase to phase Phase to ground				on (s)	Shape
VD4 – two-phase voltage dip	0,90 ± 0,05		0,95 ±	0,05	0,5 ±	0,02	
			ı		1		time
Figure: measured voltage	ge drop when the wind turb	ine unde	er test is r	not connecte	d.		ume
			ı		1		
Figure: measured pos. s	sequence fundamental act	ive powe	r				time
Figure: measured pos. s	sequence fundamental rea	ctive pov	ver				time
	<u> </u>	·					
Figure: measured nes	sequence fundamental act	ivo curro	nt				time
I igure. measureu pos. s		ive curre	· · · · · · · · · · · · · · · · · · ·				
-							
- .			· ·		T		time
Figure: measured pos. s	sequence fundamental rea	ctive cur	rent				
-							
1	-		ı		1		time

According to Measnet Power Quality Procedure, Version 4

Wind turbine type:		Shee	rt:			page	19 of 22
Pesnonse to volta	ge drops:						
Operational mode of the		ne test					
Active power range				Between 0,1	P _n and	0.3 P _n	
Case	Magnitude of voltage ately before Phase to phase	ore the dr	on of voltagon occurs) Phase to	- Duration (s)		Shape	
VD5 – two-phase voltage dip	0,50 ± 0,05		0,75 ±	0,05	0,5 ±	0,02	
Figure: measured voltage	ge drop when the wind	turhine un	der test is i	not connecte	ď		time
i igure. measured voltaç		turbine un	uer test is i		u. 		
-							
Figure: measured pos. s	sequence fundamental	active nov	√ N⊖r		T		time
I igare. measured pos. (uotive po					
-							
Figure: measured pos.	sequence fundamental	reactive p	ower		ı		time
I igare measured poor							
Figure: measured pos.	sequence fundamental	active cur	rent		1		time
ligare: measured poor		401170 041					
-							
Figure: measured pos.	sequence fundamental	reactive o	current				time
	1		T		1		time

According to Measnet Power Quality Procedure, Version 4

Wind turbine type:		Shee	et:		ŗ	age 20	of 22
Desperas to valte							
Operational mode of the		ng the test					
Active power range				Abov	e 0,9 P _n		
Case		de of voltage (fraction of voltage immedi- ately before the drop occurs) se to phase Phase to ground				(s) S	hape
VD5 – two-phase voltage dip	0,50 ± 0,0		0,75 ±	0,05	0,5 ± 0,	02	
-							
Figure: measured voltage	ge drop when the v	vind turbine un	der test is r	not connecte	d.	tim	ne
Tigaror modourou voltas							
1							
Figure: measured pos. s	sequence fundame	ental active po	wer			tim	ne
	г		1		ı	tim	 ne
Figure: measured pos. s	sequence fundame	ental reactive p	oower				
-							
	· .		1		1	tim	ne
Figure: measured pos. s	sequence fundame	ental active cui	rent				
-							
Figure: measured pos. s	sequence fundame	ental reactive o	current			tim	ne
			1		1	tim	

According to Measnet Power Quality Procedure, Version 4

Wind turbine type:		Shee	rt:			page	21 of 22
Response to volta	ae drops:						
	e wind turbine during the	test					
Active power range				Between 0,1	P _n and	0.3 P _n	
Case	Magnitude of voltage ately before Phase to phase			Duration (s)		Shape	
VD6 – two-phase voltage dip	0,20 ± 0,05		0,6 ± 0),05	0,2 ±	0,02	
Figure: macoured voltage	go drop when the wind to	urbino un	dor toot in a	ant connecto			time
rigure. measured voltaç	ge drop when the wind tu		uei lest is i	iot connecte	u.		
Figure: measured pos. s	sequence fundamental a	active po	wer				time
Figure: measured pos. s	sequence fundamental r	eactive p	oower		T		time
Figures massured ass		active cu	root		1		time
rigure. measured pos. s	sequence fundamental a	ictive cul	rent				
Figure: measured pos. s	sequence fundamental r	eactive c	current				time
					1		time

According to Measnet Power Quality Procedure, Version 4

Wind turbine type:		Sheet	:		pa	age 22 of 22
Response to volta	ge drops:				•	
	e wind turbine during the	test				
Active power range				Abov	/e 0,9 P _n	
Case	Magnitude of voltage (fraction of voltage immediately before the drop occurs) Phase to phase Phase to ground				Duration	(s) Shape
VD6 – two-phase voltage dip	0,20 ± 0,05		0,6 ± 0		0,2 ± 0,0	2
	,	4.1			1	time
Figure: measured voltag	ge drop when the wind tu	rbine und	ier test is i	not connecte	ed.	
-						
+	1		T		1	time
Figure: measured pos. s	sequence fundamental ad	ctive pow	er			
_						
			1		-	time
Figure: measured pos.	sequence fundamental re	eactive po	ower			
	ı		T			
Figure: measured pos. s	sequence fundamental ac	ctive curr	ent			time
	<u>'</u>					
-						
	, , , , ,		1		I	time
Figure: measured pos. s	sequence fundamental re	eactive cu	ırrent			
-						
	T		T		ı	time

Annex B: Uncertainty in Power Quality Measurements

B.1 Sources of uncertainty in wind turbine power quality measurements

It is a requirement for each accredited certification laboratory worldwide to accompany their test reports with a statement describing the uncertainty associated with test results. The main measured parameters in power quality testing of wind turbines are voltages, currents and wind speed. The other PQ parameters such as active and reactive powers, flicker and harmonics are calculated from main parameters.

The uncertainty of the wind speed measurements is a combination of several uncertainty components. This uncertainty is addressed in [1] based on site calibrations and anemometer characteristics. Following IEC 61400-21, chapter 7.1.3 a correction of the wind speed signal with the power curve is necessary, if the anemometer of the nacelle is used.

Uncertainty of AC measurements comprises many components. There are various sources of uncertainty that influence AC voltage and current measurements such as changes in the characteristics of transducers since last calibration, varying environmental conditions, electrical noise, transducer ratio and phase errors, and linearity. The data acquisition system uncertainty is related to offset, gain, quantization, noise, linearity, cross talk, and temperature drift specific to particular A/D converter.

The propagation of uncertainties through the calculation chain in combination with uncertainties introduced by numerical algorithms may have an effect on accuracy of calculated PQ characteristics such as RMS values, frequency, reactive power, harmonic components, flicker, etc. Such uncertainties need to be evaluated and quantified as well.

B.2 Types of uncertainty

The procedures and guidance for uncertainty estimation are contained in [2]. There are two types of uncertainty. **Type A uncertainty** is associated with the statistical distribution of measurements. Type B uncertainty is associated with systematic errors and can be estimated using data provided in instrument calibrations and manufacturer specifications. The total uncertainty of a measurement is a combination of both types. In the process of defining an uncertainty budget all of the most important contributors to uncertainty in the measurement must be considered, defined and normalized to standard uncertainty.

The general way of estimating Type A uncertainty of measured data set X is by calculating the standard deviation σ . Then the standard Type A uncertainty can be estimated as

$$U_A = \frac{\sigma}{\sqrt{n}}$$
 (1)

Where *n* is number of measurements in the data set X.

A **Type B uncertainty** is introduced by measuring instruments and can be evaluated from manufacturer specifications and calibration certificates. This information usually allows estimating accuracy for only upper and lower limits of measurement range. It is assumed in [2] that a probability distribution with constant probability density between limits (rectangular probability distribution) can be used for possible variability of the measured quantity. This is taken into account by dividing the Type B standard uncertainty by $\sqrt{3}$.

The analog measuring instruments are usually specified by class of accuracy (for example 0.2, 0.5,1, etc.) The class of accuracy means that the absolute uncertainty of the instrument

does not exceed the class number in % with relation to full scale value. Some manufacturers express accuracy of instrument in the form of ±(gain error + offset error).

The accuracy of digital instruments and A/D converters is usually described as ±(%reading + %Full Scale), ±(%reading + %range) or ±(ppm reading + ppm range). The uncertainty associated with accuracy of measurement is contributed by %Full Scale, %range or ppm range. The uncertainty associated with resolution is contributed by %reading or ppm reading.

Sometimes information about sensor nonlinearity is given by manufacturer or can be obtained from calibration data. In such case, the uncertainty introduced by non-linearity must be estimated as well.

Uncertainty contributions from all sources must be in the same units before they are combined (usually in the units of measured signal). For example, the uncertainty in wind turbine line voltage measurements must be expressed in volts. The total Type B uncertainty then can be calculated as

$$U_B = \frac{1}{\sqrt{3}} \sqrt{\sum u_{B,k}^2} \tag{2}$$

Where $u_{B,k}$ is individual Type B uncertainty component, U_B is total combined Type B uncertainty. The equation 2 assumes unity sensitivity coefficients for all $u_{B,k}$ components.

B.3 Evaluation of Type B Uncertainty

For the completeness of the analysis, it is required that an evaluation of Type B Uncertainty is performed. According to the previous paragraphs, the main sources of Type B uncertainty during the measurement procedure are the following:

- 1. Current and voltage transformers
- 2. Power quality measuring system
- 3. A/D card
- 4. Software

The uncertainty values, calculated according to [2], are presented in Table B1 and they are applicable to all tests assuming the typical error of each instrument as specified in the second column of Table B1.

Table B1. Estimated Type B uncertainty in power quality measurements

Error source	Assumptions	Uncertainty value, u _i
u _{CT.} , Uncertainty of current transformers (as in IEC 61400-12-1)	 Transformers class 1/IEC-61400-21 The typical error according to the instrument's accuracy class is considered equal to e_{CT}% of full-scale current (Conservative approach). One transformer at each phase, uniform load per phase Completely correlated errors from all three transformers Calibration error is included in the above error (accuracy class) Typical error follows a rectangular distribution 	$u_{CT} = \frac{e_{CT}}{100 \cdot \sqrt{3}} \cdot I \text{ (Amps)}$
u _{VT.} , Uncertainty of voltage transformers (as in 61400-12-1)	Transformer class 1/ IEC-61400-21 Typical transformer error equal to eVT% of full-scale voltage Calibration error is included in the above error Typical error follows a rectangular distribution	$u_{VT} = \frac{e_{VT}}{100 \cdot \sqrt{3}} \cdot V (Volts)$
U _{FT,} , Uncertainty of frequency transducer	 Typical transducer error equal to eFT% of centre frequency Calibration error is included in the above error Typical error follows a rectangular distribution 	$u_{FT} = \frac{e_{FT}}{100 \cdot \sqrt{3}} \cdot f \text{ (Hz)}$
U _{PQ} , Uncertainty of PQ measuring system	 Typical PQ system error equal to ePQ% of full scale of the measured quantity (MQ) Typical error follows a rectangular distribution 	$u_{PQ} = \frac{e_{PQ}}{100 \cdot \sqrt{3}} \cdot MQ \text{ (Units)}$
u _{PQ-cal} , Uncertainty of PQ measuring system calibration	Uncertainty in reference instruments as from calibration report	As specified in the calibration report
u _{DAQ.} , Uncertainty of A/D Card	 Typical n-bit A/D card error equal to 1/2n of full scale input range Typical error follows a rectangular distribution 	$u_{DAQ} = \frac{FullScaleInoutRange}{2^n \cdot \sqrt{3}} \cdot \frac{\partial \P Q}{\partial (Input)}$
u _{A,} , Total uncertainty in current measurement	$u_A = \sqrt{u_{CT}^2 + u_{PQ}^2 + u_{PQ-cal}^2 + u_{DAQ}^2}$ • Typical error follows a rectangular distribution	u _A (Amps)
u _{V,} , Total uncertainty in voltage measurement	$u_{V} = \sqrt{u_{VT}^{2} + u_{PQ}^{2} + u_{PQ-cal}^{2} + u_{DAQ}^{2}}$ • Typical error follows a rectangular distribution	u _V (Volts)
u _p , Uncertainty in active power calculation	$u_{P_i} = \sqrt{\left(\frac{\partial P_i}{\partial I_i} \cdot u_{A_i}\right)^2 + \left(\frac{\partial P_i}{\partial V_i} \cdot u_{V_i}\right)^2}$ • In each phase: $u_P = \sqrt{\sum_{i=1}^3 u_{P_i}^2}$ • Total: • Typical error follows a rectangular distribution	u _P (kW)
u _Q , Uncertainty in reactive power calculation	 Typical error in reactive power calculation equal to eQ % of rated reactive power, estimated by sensitivity analysis of experimental data. Typical error follows a rectangular distribution 	$u_{Q} = \frac{e_{Q}}{100 \cdot \sqrt{3}} \cdot Q_{rated} \text{ (kVar)}$
u _{FL} , Uncertainty in flicker calculation	 Typical error in flicker coefficient calculation equal to ef % estimated by sensitivity analysis of experimental data. Typical error follows a rectangular distribution 	$u_{FL} = \frac{e_f}{100 \cdot \sqrt{3}}$ (Non dimensional)
u _H , Uncertainty in the calculation of harmonic currents	 The Nyquist criterion is followed, which states that the sampling rate must be at least twice as fast as the highest frequency component in the input signal. Maximum error in sampling rate equal to eH % of rated current, estimated by sensitivity analysis of experimental data. Maximum error depends on harmonic current frequency Typical error follows a rectangular distribution 	$u_{H} = \frac{e_{H}}{100 \cdot \sqrt{3}} \cdot I_{rated} \text{ (Amps)}$

An example of type B uncertainty calculation for measurements using 1000 V (full scale RMS) voltage transducer and DAS device is given in Table B2. The total Type B expanded uncertainty for this measurement is estimated at 6.938V at 95% confidence interval.

Table B2: Example Type B uncertainty calculation for voltage measurements

Source of uncertainty	Value	Probability Dis- tribution	Divisor	Sensitivity	Standard Uncertainty (Volts)
Sensor gain error	0.6%	Rectangular	√3	1	3.464
Sensor offset error	0.013%	Rectangular	√3	1	0.075
DAS % of reading	0.03%	Rectangular	√3	1	0.173
DAS % of full scale	0.008%	Rectangular	√3	1	0.046
Combined standard unce	3.469				
Expanded uncertainty at	6.938				

Similarly, Type B uncertainty can be estimated for current measurement channel as well. An example for current measurement uncertainty using 3000 A current probes (1mV/A) is given in Table B3.

Table B3: Example of Type B uncertainty calculation for current measurements

Source of uncertainty	Value	Probability Dis-	Divisor	Sensitivity	Standard Uncertainty
		tribution			(Amps)
Sensor gain error	1%	Rectangular	√3	1	17.32
Sensor linearity error	0.2%	Rectangular	√3	1	3.46
Noise	8 mV	Rectangular	√3	1	4.62
DAS % of reading	0.03%	Rectangular	√3	1	0.52
DAS % of full scale	0.008%	Rectangular	√3	1	0.138
Combined standard unce	18.26				
Expanded uncertainty at	95% confid	ence level (k=2):			36.52

In case if power measurements are conducted using dedicated power transducer, the Type B uncertainty in power measurement can be estimated using the same method as for voltage and current.

Both instrument transformers and DAS devices have phase shifts. An example of uncertainty calculation for phase angle is shown in Table B4.

Table B4: Example of Type B uncertainty calculation for phase angle

Source of uncertainty	Value	Probability Dis-	Divisor	Sensitivity	Standard Uncertainty
		tribution			(el. deg)
Voltage sensor phase	0.002	Rectangular	√3	1	0.001
error	deg				
Current sensor phase	0.2 deg	Rectangular	√3	1	0.115
error					
DAS phase error	0.003%	Rectangular	√3	1	0.002
Combined standard unce	0.115				
Expanded uncertainty at	95% confid	ence level (k=2):			0.23

B.4 Evaluation of Total Uncertainty

The final step in the process is combining both types A and B for calculating total expanded uncertainty in the power quality measurements using the following equation.

$$U = 2\sqrt{U_A^2 + U_B^2} \tag{3}$$

The total expanded uncertainty in equation 3 is obtained by multiplying the resulting standard uncertainty value by a factor of two (k=2), approximating 95% confidence level.